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Purely Absolutely Continuous Spectrum for 
Almost Mathieu Operators 
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Using a recent result of Sinai, we prove that the almost Mathieu operators 
acting on l:(2z), (H,.). ~U)(n) = ~(n + 1 ) + ~U(n - 1 ) + 2 cos(~on + ct) ~'(n), have a 
purely absolutely continuous spectrum for almost all e provided that e) is a 
good irrational and 2 is sufficiently small. Furthermore, the generalized eigen- 
functions are quasiperiodic. 

KEY WORDS: Schr6dinger equation; quasiperiodic potential; Harper's 
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1. I N T R O D U C T I O N  

In this paper  we study the family of self-adjoint operators  H~,;. acting in 
/2(z), 

( H ~ . ; ~ V ) ( n ) = ! P ( n + l ) + ~ ( n - - 1 ) + ~ ; ~ c o s ( c o n + ~ ) ~ ( n )  ( i )  

where co is a typical irrational number  (see below Theorem 1). This 
opera tor  is called the almost  (or discrete) Mathieu opera tor  and the 
associated eigenvalue problem is well known among  physicists as the 
Harper  equation. 

This opera tor  has been extensively studied since the pionering work by 
Azbel, Andr6, and Aubry  ~1) and we recall the main features of this model  
of interest here. The spectrum (as a set) of this operator  is a Can to r  set at 
least for generic values of  co and 2. (2) Thus, the spectrum contains infinitely 
many  gaps which can be labeled by the integrated density of states k: in the 
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gaps k is constant and takes its value in the set no)mod 1, where n is an 
integer. The spectral measure does not contain any absolutely continuous 
component as soon as 2 > 2 ,  (3) and there is no eigenvalue for 2 < 2 .  (4) 

Furthermore, using KAM techniques, it has been proved that for 2 suf- 
ficiently small (and for typical o)) there exists an absolutely continuous part 
in the spectrum C5) and conversely there exist eigenvalues for large 2. (6) 
More recently, Sinai (7) has shown that it is possible to overcome the usual 
limitations of the KAM techniques and to tackle exactly the problem of 
resonances to prove that the spectral measure is only pure point for 2 
sufficiently large and for almost all ~. An analogous result has been proved 
independently by Fr6hlich et aL (8) In this note, we deduce from the above 
result that the spectral measure is purely absolutely continuous for small 2 
and for almost all c~. 

T h e o r e m  1. For almost all o) (see remark at the end of this note) 
and for 2 sufficiently small, the spectral measure of Ha,;. is purely absolutely 
continuous for almost all ~. Furthermore, on this set of o), 2, ~, spectrally 
almost surely, the generalized eigenfunctions are quasiperiodic in the l 2 
sense.  

This theorem corresponds exactly to that of Sinai for large 2. It 
suggests that, as for large 2, the usual singularities of the KAM perturba- 
tion theory could be overcome to give rise to a complete perturbative 
expansion in terms of quasiperiodic eigenfunctions. 

2. SINAI  RESULT A N D  A U B R Y  DUALITY 

Let us introduce the Hilbert space ~'~ = L2(T 1) (~)12(~), which consists 
of functions 7t(e, n) satisfying 

f d~ ~(~, n) 2< + ~  
n 

The Hilbert space ~ is decomposed as ~ ~ d~ and we can define the 
operator H;. as 

H A = f H~,;~ d~ (2) 

Then the following operator U from .~  into itself 

(U~P)(fl, p)= f d~ ~ ei~P+i"(~+ P~)~(~, n) (3) 
n 
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is unitary [as can be checked by using the density in 34f of the linear 
combinations of the functions exp(i~p) gt(n) for arbitrary gt in 12(2) and p 
in Z1. The inverse operator U 1 is given by 

(U-1 gt)(~, n)= f dfl ~ e - i~p in(B+P~ p) (4) 
P 

Through the unitary operator U, H~. is conjugated to the operator 
(2/2) Hal ~. We now recall Sinai's result: 

T h e o r e m  (Sinai). For almost every co and for 2 sufficiently large, 
there exist measurable multivalued functions Eg(e) and gtk(c~) (with k 
almost surely finite) such that: 

(i) Ek(e) is an eigenvalue of H~.~ and gt~(~) the corresponding 
eigenvector. 

(ii) {E~(a)=Ek(a+me)), gJ~m(C~,n)= ~(c~ + me) ,n -m)}  is a com- 
plete set of eigenvalues and eigenvectors of H~.;~ for almost all c~. 

We show that this special covariant set of eigenvectors induces a 
natural spectral decomposition of H4/;. through the unitary conjugation 
defined by (3). 

In the L 2 sense, any vector T(c~, n) in .X ~ can be written as 

~ = E  k k ~%(%. ~)~ (5) 
k , m  

where (-,.)~ is the inner product in J((~. Thus, by duality, we get 

U ~ = U ~  k 
k , m  

= 2 U ~ g ~ ( ~ ,  ~1~ (6) 
k , m  

since U is unitary and ~Pk m is a sequence of orthonormal vectors. We have 

Ugt(fl , P) = 2 f dc~ 2 ei~'p + i'(~ + po~)gtk(c ~ _ me), n -- m)( ~ ,  ~1~ 
k ,  m n 

= ~ f cl~ ~ e iC . . . .  )P+i"(~+P'~ n --m) 
k . m  n 

x ~ ~k(ot, q--rn)( ~u)(ot- rne), q) 
q 

= y, fd~,p*(=,/3, p) e,m~y~ ~uk(a,q) gt(~_rne),q+m ) (7) 
k , m  q 
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where 

~ ( e , / L  p) = ~ e ~+" '~*  ~/~'k(e, n) 
n 

For any p, ~k(e, fl, p) is square integrable with respect to e and ft. Thus, 
if 7~(e,m) decays sufficiently rapidly in m, then Y~q gtk(e, q) 
~t(e-mco, q+m) decays rapidly in m and in the L 2 sense we have for a 
dense set of gt in ~f: 

Ugt(fl, p) = ~ f ch ~k(c~, fl, p) ~ ~ Tg(a, q) e'mr -- moo, q + m) 
k m q 

= Z de qr~k(e, fl, p) Z Z 7tk( e, q) e~'~ 
k m q 

x dT ~e  -'~j iq"+J~l-'m'/(UgO(7, j) 
J 

= Z de q~k(e, fl, p) Z ~k( e' q) 2 eim~ 
k q m 

X d~/2e-i~J-'q~+Jc~ j) 
J 

= Z f de qsk(e, fl, p) Z ~uK( e' q) 2 e i~J-iq(fl +jr U~)(/~, j )  
k q j 

(8) 

the last equality holds since if ~(e, m) decays sufficiently rapidly in m, then 
(U~)(7, j)  is regular in 7. Finally, we get for a dense set of 7 t in Yf 

gJ(fl' P) = ~ f de ~k(e, fi, p) ~ ~k(e, fl, q)* ~f(fl, q) 
k q 

(9) 

where the * holds for the complex conjugacy. 
Furthermore, one easily checks that @~(e, fl, p) satisfies formally 

(2/2) Ha, a/;_qSk(a, [3,-) = Ek(cQ t/'k(c~, fl, .) (lO) 

Thus, for almost every e and fl, (10) holds and (9) looks like the spectral 
decomposition of H : ( 9 )  in terms of the quasiperiodic (in the l 2 sense) 
functions ~k(e, fi, p). The conclusion now requires that the measure on E 
induced by the measure dc~ is absolutely continuous with respect to the 
Lebesgue measure. This relies on the following lemma, which is a 
consequence of the Sinai proof. 
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k e m m a  1. Let Fk(E) be the distribution function of values of 
Ek(~): 

Fk(E) = mes{~: Ek(~) ~< E} 

Then for any s E [-1, 2) 

f p dFk( E)/dE]" dE < 
k 

Thus (9) can be written as 

O0 

T(fi, p) = ~ f Idc~/dEk(a)i dE ~k(c~, fi, p) ~ qsk(~, fl, q)* ~P(fl, q) (1t) 
q 

Notice that e may be a multivalued E a-, thus, the integral has to be com- 
puted by summing over all branches of c~: the sum over all branches of 
Id~/dEk(~)I dE provides a measure equal to IdFk(E)/dE! dE. Thus, Eq. (11) 
is exactly the spectral decomposition of the operator H~,4/). in terms of the 
Lebesgue measure dE and of the quasiperiodic functions qsk(~, fl,. ). This 
ends the proof of Theorem 1 and we now prove Lemma 1. 

Proof of Loramo 1. The proof of L"(N) regularity of the multivalued 
function ~(E) inverse to E(~)= {Ek(~)} is based on a very detailed analyti- 
cal description of {E~(c0} given in ref. 7. Using the inductive procedure of 
that paper, we can represent the countable family {Ek(~)} in the following 
way: 

{Ek(c~)}= ~ {A"m(~),l<~m<~M(t)} 
t 0 

where M(t) has a polynomial upper bound, M(t) < P(t). The degree of P 
depends on co. The domain of definition of each function A"'~(e) is a 
nowhere dense Cantor set. This set is constructed rather implicitly, but it 
follows from inductive assumptions in ref. 7 that this set is contained in an 
interval of length less then exp( -Ct ) .  The constant C, as well as several 
other constants throughout this proof, depends on 2 and is bounded away 
from 0 for all sufficiently large 2. Furthermore, A"m(2) c a n  be written as 

A ' . " ( c ~ )  = 3 ' , ~ ( ~ ) [  1 - -  Zt, m(~)-]  

where Z,,,~(e) is the characteristic function of a countable union of 
segments on which A t'm is not defined. As to A"",  it has exactly one critical 
point (maximum or minimum) and its second derivative A t'm at the critical 
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point is greater than exp(bt) by absolute value, b > 0 .  Respectively, the 
density of the distribution of values for ~t,m (hence for A t'm) has a unique 
singularity of LS(R) type, (At'm) -1 ] E - E  t'm] -1/2.  Summing over all M(t) 
branches A t'm, w e  get a multivalued function A t for which the density of 
the distribution of values is less than P(t)exp(-Clt)<exp(-CJ).  Sum- 
mation over all t >~ 0 completes the proof. 

Remark. The frequency ~o was assumed in ref. 7 to satisfy the follow- 
ing Diophantine condition: the coefficients In of the continued fraction co = 
[ l l ,  12,..., l ..... ] grow not faster than const .n 2. So, rigorously speaking, the 
above lemma is proved for such typical o), since we just refer to the induc- 
tive assumptions of ref. 7. However, the condition l, ~< const �9 n 2 is certainly 
not optimum, and we suggest that any rate slower than exponential can be 
treated in a similar way. 

REFERENCES 

1. M. Ya. Azbel', Soy. Phys. - JETP 19:634 (1964); S. Aubry and G. Andre, Ann. Israel Phys. 
Soc. 3:133 (1980). 

2. J. Bellissard and B. Simon, J. Funct. Anal, 48:408 (1982). 
3. J. Avron and B. Simon, Duke Math. J. 50:369 (1983); L.A. Pastur and A.L. Figotin, 

J. Math. Phys. 25:774 (1984). 
4. F. Delyon, J. Phys. A 20:L21 (1987). 
5. E. I. Dinaburg and Ya. Sinai, Funct. Anal. Appl. 9:279 (1975); E.D. Belokolos, Theor. 

Math. Phys. 25:276 (1975); Ya. Sinai, Funct. Anal. Appl. 19:42 (1985); R. A. Johnson and 
J. Moser, Commun. Math. Phys. 84:403 (1982); H. Russmann, Ann. N. Y. Acad. Sci. 357:90 
(1980). 

6. J. Bellissard, R. Lima, and D. Testard, Commun. Math. Phys. 88:207 (1983). 
7. Ya. Sinai, J. Stat. Phys. 46(5/6):861 (1987). 
8. J. Fr6hlich, T. Spencer, and P. Wittwer, Localization for a class of one dimensional quasi- 

periodic Schr6dinger operators. Preprint. 
9. I. M. Gelfand and N. Ya. Vilenkin, Generalized Functions, Vol. 4 (Academic Press. 1964). 

Communicated by B. Souillard 


